
 
 

 
 

215 

Models For Screening Anticancer Drugs 
Adib Hussain1, Arabinda Nayak1 

1 Gupta College of Technological Sciences, Asansol, West Bengal, India 
 

Received  : 15 Sept. 2024               Accepted : 6 Oct. 2024 
 
 

Abstract 
Cancer remains one of the most challenging diseases to combat, necessitating the 
development of effective and targeted anticancer drugs. The process of discovering 
and screening potential compounds for their anticancer properties is both time 
consuming and expensive. To expedite this process and enhance drug discovery 
efforts, computational models have emerged as valuable tools for screening and 
predicting the efficacy of potential anticancer drugs. This study aims to develop and 
evaluate multiple anticancer screening models using diverse computational 
techniques. A comprehensive dataset comprising chemical compounds and their 
associated anticancer activities will be collected from publicly available databases and 
literature sources. Several machine learning algorithms and neural networks, will be 
employed to build predictive models. Various molecular descriptors, including 
physicochemical properties, 2D and 3D molecular fingerprints, and structural 
features, will be extracted to represent the chemical compounds. Feature selection 
techniques will be applied to identify the most informative descriptors, enhancing 
model performance and interpretability. The impact of different algorithms, feature 
representations and descriptor selection techniques on model performance will be 
thoroughly investigated. Additionally, the models' interpretability will be assessed to 
gain mechanistic insights into the structure- activity relationships of the screened 
compounds. The developed models will be rigorously evaluated using appropriate 
validation strategies. The results of this study will contribute to the advancement of 
computational anticancer drug discovery and facilitate the identification of potential 
lead compounds for further experimental validation. The validated models can serve 
as valuable tools for prioritizing candidate compounds, reducing the time and cost 
associated with traditional screening methods, and accelerating the discovery of novel 
anticancer agents. 
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1. Introduction: 
Cancer is a complex disease marked by abnormal 
cell growth, capable of affecting any part of the 
body and occurring at any age, though the risk 
increases with aging. Despite advancements in 
early detection and treatment, cancer remains the 
second leading cause of death globally. In 2012, 
there were 14.1 million new cancer cases and 8.2 
million deaths, with projections indicating 21.7 
million cases and 13 million deaths by 20301. 
Cancer’s causes are diverse, involving genetic, 
environmental, and lifestyle factors, as well as 
infections like hepatitis B, C, and human 
papillomavirus. Both genetic predispositions and 
exposure to carcinogens play roles in cancer 
development, while differences in incidence and 
mortality rates between men and women are 
notable, potentially due to variations in biology, 
exposure, and treatment response2. 
Current treatments, including surgery, radiation, 
and chemotherapy, often cause significant side 
effects, as they may damage healthy cells. 
Chemotherapy, in particular, faces limitations due 
to toxicity, drug resistance, and poor selectivity in 
targeting cancer cells. New strategies, such as 
prodrugs and drug delivery systems (DDS), aim to 
address these issues by improving drug selectivity 
and reducing systemic toxicity. Prodrugs are 
inactive compounds that become active upon 
metabolism, offering greater precision in targeting 
cancerous cells and minimizing damage to healthy 
tissues. DDS technology further enhances 
treatment efficacy by delivering drugs directly to 
tumors, reducing side effects. 
Although progress has been made, existing 
treatments still present challenges, including 
immune system suppression and damage to vital 
organs. Research into alternative therapies, such as 
immunotherapy and targeted drug delivery 
systems, continues in the hope of developing more 
effective and less harmful cancer treatments3. 
 

2. Etiology of Cancer : 
The causes of cancer have long been a topic of 
interest, with environmental exposures playing a 
significant role, as noted during a 1950 World 
Health Organization symposium. The discovery 
that immigrants tend to develop cancers more 
common in their new countries suggested that 
environmental factors, rather than genetics, were 
the primary cause of most cancers. This led to the 
founding of the International Agency for Research 
on Cancer (IARC) in 1965 to study cancer’s 
origins. 
Early links between occupational exposures and 
cancer were established, such as scrotal cancer in 
chimney sweeps and lung cancer in miners. Over 
time, several professions were linked to higher 
cancer rates due to exposures to carcinogens, such 
as β-naphthylamine, which caused bladder cancer 
in dye workers. Despite these findings, early 
attempts to induce cancer in animals using irritants 
failed to fully explain its mechanisms4-5. 
Alcohol has been classified by the IARC as a 
Group 1 carcinogen, although moderate drinking 
was associated with reduced risks of thyroid and 
lung cancers. Studies have also shown that even 
low concentrations of many chemicals can have 
carcinogenic effects, and natural substances, 
including some plant toxins, have been linked to 
cancer in animals. 
Occupational exposures, such as radium in watch 
dial painters and benzene in chemical workers, 
were also shown to cause rare cancers like 
osteosarcomas and leukemia. Dialysis patients 
were found to have an increased risk of cancer, 
likely due to chronic kidney disease and immune 
suppression. Additionally, infectious agents have 
been identified as significant contributors to 
cancers, especially in underdeveloped countries. 
Understanding these links has improved cancer 
prevention strategies, and the IARC continues to 
research carcinogens across various domains6. 
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3. Pathophysiology of Cancer: 
Pathophysiology focuses on abnormal changes in 
body processes associated with diseases, 
particularly biological mechanisms related to 
conditions like cancer and diabetes. Research in 
this area aims to identify biological markers and 
mechanisms that explain the etiology and 
pathogenesis of diseases. The link between 
diabetes and cancer was first suggested in 1932, 
but large-scale studies later confirmed a strong 
association between diabetes and increased risks of 
cancers such as pancreatic, liver, endometrial, 
breast, colon, and bladder. In contrast, prostate 
cancer shows a negative correlation with diabetes. 
Diabetes can double the risk of developing certain 
cancers like hepatocellular and pancreatic, and 
survivors of some cancers are more prone to 
develop diabetes. Obesity, a major risk factor for 
diabetes, has also been linked to cancer due to its 
inflammatory and endocrine effects. Research 
shows that obesity and cancer are connected 

through mechanisms like insulin resistance, 
hyperglycemia, and hyperinsulinemia7. 
Obesity contributes to cancer risk, with BMI-based 
measures often used to assess general adiposity, 
although visceral fat measurements may be better 
indicators. Obesity is a significant risk factor for 
postmenopausal breast cancer and other cancers. 
Bariatric surgery has been shown to lower cancer 
risk by reducing obesity-related malignancies. 
Diabetes patients are at a higher risk of developing 
cancer soon after diagnosis, possibly due to 
prolonged hyperinsulinemia. Cancer survivors, 
especially those treated with radiation or 
chemotherapy, are also at risk of diabetes. There is 
a need for improved diabetes screening and 
management among cancer patients. Research 
suggests that co-morbid conditions like diabetes 
significantly affect life expectancy and quality of 
life more than the original cancer, highlighting the 
need for integrated care8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure showing various pathophysiological factors for cancer 
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4. Epidemiology of Cancer:  
Pathophysiology studies the abnormal changes in 
body processes due to diseases, focusing on 
biological mechanisms linked to conditions like 
cancer and diabetes. Research aims to identify 
biological markers and mechanisms to explain 
disease etiology and pathogenesis. The link 
between diabetes and cancer was first suggested in 
1932, with later studies confirming the strong 
association between diabetes and cancers such as 
pancreatic, liver, endometrial, breast, colon, and 
bladder. In contrast, diabetes is negatively 
associated with prostate cancer. Diabetes can 
double the risk of hepatocellular and pancreatic 
cancers, and cancer survivors are more prone to 
develop diabetes. Obesity, a key risk factor for 
diabetes, is also linked to cancer through 
mechanisms such as insulin resistance, 
hyperglycemia, and hyperinsulinemia. Obesity is 
connected to an increased risk of cancers, 
especially postmenopausal breast cancer, with 
BMI often used as a measure, although visceral fat 
assessments may be more accurate. Bariatric 
surgery has been shown to lower the risk of 
obesity-related cancers9. 
Diabetes patients are at a higher risk of cancer 
shortly after diagnosis, likely due to prolonged 
hyperinsulinemia. Cancer survivors, particularly 
those treated with radiation or chemotherapy, are 
also at higher risk of diabetes. Improved screening 
and management of diabetes in cancer patients are 
essential, as co-morbid conditions like diabetes can 
impact life expectancy and quality of life more 
than the original cancer. Integrated care is crucial 
for these patients, underscoring the need for further 
research and attention to shared risk factors10. 
 
5. Models for Screening Anticancer Drugs: 
Drug screening models are crucial in the early 
stages of drug discovery to predict the activity, 
efficacy, and safety of potential medications before 
clinical trials. Various models are utilized in this 

process, including in silico models, which employ 
computer-based simulations to predict drug 
behavior, interactions with target proteins, and 
pharmacokinetics; in vitro models, involving 
laboratory experiments on cells or tissues (e.g., 
cell-based assays) to assess a drug's activity and 
toxicity; and in vivo models, where animal testing 
evaluates drug efficacy, safety, and 
pharmacokinetics using species like mice or rats. 
Additionally, high-throughput screening (HTS) 
employs automated systems to rapidly screen large 
compound libraries for target activity, while 3D 
organoids use three-dimensional cell cultures to 
mimic organ functions, providing more accurate 
predictions of drug responses. Finally, patient-
derived models utilize cells from patients to create 
personalized models that study specific disease 
mechanisms and drug responses. These models 
serve as essential tools in drug discovery, requiring 
further preclinical and clinical validation before a 
drug can be approved for human use11-12. 
 
 5.1 In Silico models of screening: 
 5.1.1 Quantitative Structure Activity 
Relationship model: 
 Introduction: 
Quantitative structure-activity relationship (QSAR) 
is an empirical mathematical model that 
establishes a statistically significant association 
between chemical structures and biological 
features, enabling the prediction of a new 
chemical's biological or toxicological properties 
based solely on its structure. This approach 
enhances efficiency by eliminating the need for 
time-consuming experimental testing. Including 
the amino acid (AA) sequence of receptors in 
QSAR models can further improve prediction 
accuracy by accounting for receptor structure and 
activity. The application areas for QSAR have 
expanded to encompass drug design, drug toxicity 
prediction, enzyme interaction mechanisms, and 
biological activity prediction. QSAR primarily 
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relies on three techniques: molecular description, 
chemical similarity search, and machine learning13. 
The foundation of QSAR lies in acquiring 
molecular descriptors, which are information-rich 
numerical features extracted from chemical 
structures. These descriptors can be qualitative 
(e.g., MACCS keys) or quantitative (e.g., 
molecular field) and can range from 1D to 6D. 
Various categories of descriptors include 
composition, molecular property, topological, and 

geometric descriptors. The QSAR modeling 
process involves several key steps: molecular 
coding to represent complex molecules as vectors 
of attributes; constructing training and testing sets 
from an appropriate number of compounds; and 
verifying the model's applicability and 
predictability through internal and external 
validation. Iteratively refining feature 
combinations and algorithm parameters is crucial 
for optimizing the model's performance14. 

 
  

 
Figure showing QSAR model development and validation 

(Pub Chem, http://pubchem.ncbi.nlm.nih.gov/, 2008) 
 

Further Consideration: 
The success of QSAR is attributable to the change 
in how the ligand structure is represented, which 
accurately captures the basic variance in the 
ligand's scope. For example, regardless of how 
complicated the resulting physicochemical and 
biological interactions are, the structural difference 
between two molecules alone defines their 
bioactivity. Maximizing the space of positive and 
negative samples is the ultimate goal of ligand 
comparison. If the developed QSAR 
models are expected to be useful for drug synthesis 
as well as drug screening, properties such as 
synthesizability, hydrophobicity, drug-likeness, the 

Lipinski rule, and false-positive concerns must be 
considered15. 
 
Conclusion: 
ML and DL techniques rely on information theory 
and data fitting theories to analyze experiment data 
obtained from NMR, X-ray, and cryo-EM. The 
accuracy of predictions primarily depends on the 
availability of reliable and sufficient data, as well 
as the computational power required for processing 
experiment data through MM/QM simulations. 
However, many fields in computational biology 
lack the necessary resources, making ML/DL less 
effective in those areas. To address this issue, 
powerful free tools like AlphaFold can be utilized. 



 
 

 
 

220 

The broad applicability of ML in various domains 
relies on its ability to solve problems in a manner 
similar to humans, including tasks such as 
classification, clustering, elucidation, verification, 
and determining the importance of factors. 
Currently, iterative thinking is being incorporated 
system16. 
 
5.1.2 Molecular Docking Model: 
Introduction: 
Lung cancer is a leading global cause of mortality 
and is often diagnosed at advanced stages. While 
limited studies exist on scopoletin's anti-cancer 
effects, traditional Chinese medicine (TCM) has 
gained attention for its therapeutic potential against 
cancer, prompting researchers to explore its 
mechanisms and target malignancies17. 
Procedure: 
Cells from A549, BEAS-2B, HCT-116, and 
HepG2 lines were cultured in RPMI1640 media 
supplemented with 10% fetal bovine serum (FBS), 
100 U/mL of penicillin G, and 100 µg/mL of 
streptomycin, at 37°C with 5% CO2. The cells 
were seeded at a density of 1 × 10^4 cells per well 
in 96-well plates and treated with varying 
concentrations of scopoletin (1, 2, 4, 8, 16, and 32 
µg/mL) for 24 hours. Following treatment, 10 µL 
of MTT was added to each well, and after 4 hours 
of incubation, the supernatant was removed. The 
formazan product was dissolved in 150 µL of 
dimethyl sulfoxide (DMSO), and absorbance was 
measured at 490 nm using a Spark 10 M 
microplate reader18. 
Molecular docking was conducted using 
AutoDockTools-1.5.6, which operates on a semi-
flexible principle. Pre-docking of proteins and 
small molecules was facilitated by PyMOL. Gene 
targets were retrieved from the PPI network and 
downloaded in PDB format from the RSCBPDB 
database. The 3D structures of scopoletin were 
generated using ChemDraw and loaded into 

AutoDockTools-1.5.6, where they were 
hydrogenated, charged, and the number of 
rotatable bonds calculated. Non-protein molecules 
were eliminated using PyMOL, and the lowest 
energy pose was identified through 
AutoDockTools-1.5.6. The binding affinity is 
considered stronger when the dock binding free 
energy is lower than −4 kcal/mol19. 
 
 Results: 
MTT assay results indicated that scopoletin 
significantly reduced cell viability in A549 cells 
compared to the control (p < 0.05 and p < 0.01) as 
the concentration increased, while it showed no 
cytotoxic or antiproliferative effects on BEAS-2B 
cells after 24 hours. The half-maximal inhibitory 
concentration (IC50) of scopoletin for A549 cells 
was approximately 16 µg/mL, with cell viabilities 
of 95.06%, 82.09%, 72.78%, 62.84%, 50.38%, and 
41.81% at 1, 2, 4, 8, 16, and 32 µg/mL 
concentrations, respectively. This indicates that 
scopoletin restricts A549 cell growth in a 
concentration-dependent manner. Furthermore, 
scopoletin inhibited the proliferation of HepG2 and 
HCT-116 cells. Although scopoletin demonstrated 
anti-cancer effectiveness, its specific mechanism 
remains unclear. Thus, this study aims to screen 
suitable cancer cell lines using MTT assays and 
explore potential targets and pathways through 
network pharmacology and high-throughput 
molecular docking. 
The findings suggest that scopoletin exhibits anti-
non-small cell lung cancer (NSCLC) effects while 
showing no harmful effects on healthy lung 
epithelial cells. Notably, EGFR emerged as a 
significant target during the network pharmacology 
analysis, and further experimental validation is 
underway to corroborate these results20-2  
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Figure showing the effect of Scopoletin on the viability of A549 
(A), BEAS-2B (B), HCT-116 (C) and HepG2 (D) cells. 

 
5.2 In Vivo Models of Screening: 
5.2.1 Xenograft Model: 
Cell line-derived xenograft (CDX) models, formed 
by implanting cancer cell lines into 
immunodeficient mice, have significantly 
contributed to cancer drug therapy development. In 
contrast, patient-derived xenograft (PDX) models 
better mimic human cancer by using tumor tissue, 
preserving biological features and 
microenvironments. However, CDX models often 
lose biological properties after multiple passages 
and have a high proportion of cancer cells relative 
to stromal cells. Advances in molecular biology 
have clarified the signals involved in cancer 
progression, highlighting the importance of the 
tumor microenvironment, which includes stromal 
cells like tumor endothelial cells, cancer-associated 
fibroblasts, and tumor-associated macrophages, in 
cancer growth and metastasis22-23. 
 
Requirements : 
In PDX models, several immunodeficient mice are 
implanted with human cancer tissue. The survey's 

findings showed that a variety of mouse strains, 
including naked mice, SCID mice, NOD/SCID 
mice to SCID/beige mice, NOG or NSG mice, 
Rag2 knockout (KO) mice, and   Rag2 KO/Jak3 
KO mice, are utilized in PDX models. The two 
most popular models are naked mice and NOG or 
NSG mice. While naked mice are easier to handle 
because to their lack of fur, NOG or NSG mice are 
genetically altered, extremely immunodeficient 
mice with a high rate of tumour  
transplantation success24. 
 
Procedure : 
Eighteen out of nineteen academic researchers who 
responded to a survey on "anticancer drugs 
developed" and "PDX models used" reported 
utilizing human tumor tissue for their work. 
Among these researchers, 27.8% indicated they 
had established their own standard operating 
procedures (SOPs) for maintaining patient-derived 
xenograft (PDX) models, while 66.7% stated they 
followed defined processes but lacked formal 
SOPs. To encourage the broader adoption of 



 
 

 
 

222 

publicly available PDX models, it is crucial to 
implement an integrated quality control and 
assurance mechanism across research teams. 
Enhancing the quality of PDX models also hinges 
on comprehensive data accompanying these 
models. Survey results revealed that the more 
detailed the PDX model, the more valuable the 
information, specifying what is essential, 
recommended, or optional25-26. 
Most researchers reported documenting key patient 
information when creating PDX models, including 
age, gender, disease name, treatment history, 
medical history, infection status, and consent 
status, alongside tumor characteristics and 
histopathological features. Additionally, they 
recorded details about the animal strain used, the 
animal's sex, PDX tissue passage number, and 
tumor engraftment rates. The PDX Minimal 
Information (PDX-MI) framework has been 
proposed to standardize the essential data 
collected, ensuring consistency in quality and 
facilitating drug sensitivity testing using the PDX 
models27. 
 
Conclusion : 
PDX models should be stored in a negative 
pressure rack with a HEPA filter for microbial 
control in SPF conditions. However, a positive 
pressure rack is acceptable if BSL2 compliance is 
met. Standard operating procedures (SOPs) must 
be established for creating PDX models, along 
with a system to manage essential information. It is 
recommended to use PDX models with up to nine 
passages for experiments, while models with ten or 
more passages should undergo appropriate quality 
assessments before use28. 
 
5.2.2 Mouse Model: 
Introduction: 
Myelosuppression is the most frequent dose-
limiting hazard of anticancer medicines observed 
in humans. Finding drugs that are less 

myelosuppressive than those that are currently 
used in clinical practise is a key goal of anticancer 
drug research programmes and evidently, a reliable 
experimental test technique is required to 
determine whether novel medications have a 
myelosuppressive impact29. 
 
Materials and Methods : 
Male BDF 1 mice weighing 25–291 g were used in 
these experiments; they were purchased from 
Charles River Laboratories in Wilmington, 
Massachusetts. The mice were kept in cages made 
of wire and had unrestricted access to food and 
water. Based on their myelosuppressive effects in 
man, the anticancer medicines examined in these 
investigations were divided into three categories: 
(a) myelosuppression is dose-limiting; (b) 
myelosuppression occurs but is not dose-limiting; 
and (c) little or no myelosuppression occurs. 
Except for BCNU, which was dissolved in 100% 
ethanol and diluted with saline before being 
administered intravenously (IP), other medications 
were dissolved in saline or water. For each IV or 
IP injection, the mice got the appropriate dose at a 
volume of 0.25 ml/mouse or 0.5 ml/mouse due to 
the drug concentrations in solution30-31. 
 
Experimental Design: Blood was drawn from the 
retro-orbital plexus of mice (40–50 per drug, 
10/dose) two days before drug administration. 
Total WBC counts were measured using a Model S 
Coulter Counter, and absolute neutrophil counts 
were calculated from Wright-stained blood smears. 
Mice received a single drug dose (56%, 75%, 
100%, or 133% of the LDs0) on day 0. Blood 
samples were taken on days 4 and 7 post-treatment 
to measure WBC counts, with day 4 typically 
showing the lowest neutrophil levels. Drugs' 
leukopenic and neutropenic effects were classified 
as significant (>65%), moderate (35%-65%), or 
minor (<35%) based on WBC and neutrophil 
counts at maximum tolerated doses32. 
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Conclusion : 
The ability of the mouse to qualitatively predict the 
organ toxicities of anticancer medicines in humans 
has been tested. The current experiments sought to 
ascertain if the mouse would serve as a useful 
animal model for testing the myelosuppressive 
effects of anticancer medications, the neutropenic 
effects seen in mice were consistent with the 
myelosuppressive effects seen in people and there 
are no false positives, which is significant. We 
used a single-dose therapy and set post-treatment 
blood sampling time points to assess how these 
medications affected mice neutrophil levels and to 
more precisely pinpoint the nadir day and effect, 
each drug's post-dose bleeding timeline may have 
been optimized33. 
 
5.3 In vitro models 0f screening: 
5.3.1 Three-dimensional micro physiological 
model: 
Introduction: 
Current drug screening methods often rely on 2D 
systems or animal models to assess toxicity, 
pharmacokinetics, pharmacodynamics, and organ 
system effects. While 2D cell cultures lack the 
complexity of in vivo 3D tissues, animal models 
fail to fully replicate human-specific drug 
responses. Replicating 3D arrangements of human 
cells, with multiple organ systems and a 
circulatory network, is highly desirable since 
vasculature links organ systems and supports 
nutrient and waste exchange. Drug effects on 
target tissues depend on multiple systems, such as 
the gastrointestinal, circulatory, and urinary 
systems in chemotherapy. Anticancer drugs like 
anthracyclines and methotrexate can cause dose-
dependent myelosuppression, though 
hematopoietic growth agents have improved the 
management of this side effect. To address the 
need for better preclinical toxicity models, high-
throughput screening systems using 3D human 
tissues have been developed. These systems 

incorporate tumor, cardiac, and bone marrow 
tissue modules, connected by human microvessels, 
to evaluate drug efficacy and organ-specific 
toxicity34-35. 
 
Procedure:   
Robust in vitro microphysiological systems have 
been developed for high-throughput preclinical 
screening of anticancer drugs to assess potential 
side effects across multiple tissues and organ 
systems. These systems must replicate key 
physiological processes and anatomical features of 
in vivo tissues, though it is neither necessary nor 
practical to fully mimic every aspect of tissue 
architecture. The goal is to reflect the optimal 
anatomical complexity that impacts drug 
distribution and response. Correlating in vitro 
results with in vivo physiology presents unique 
challenges for each organ system. The following 
sections discuss key organ characteristics, their 
interactions with anticancer drugs, and techniques 
for simulating these traits in microphysiological 
platforms36-38. 
 
Results:  
The vasculature is crucial for nutrient delivery and 
waste removal in human tissues, necessitating the 
presence of perfused vessels with physiological 
flow in human microphysiological systems to 
replicate the complex 3D arrangement of cells and 
extracellular matrix (ECM). While diffusion 
primarily governs molecular transport across 
vascular walls into normal tissues, limited 
convection occurs, particularly in capillaries. 
Vascular permeability varies across tissues and is 
influenced by factors like blood flow. 
Hematopoietic stem cells (HSCs), which can 
remain dormant, self-renew, or differentiate into 
progenitors, are often targeted by antineoplastic 
drugs, leading to immunosuppression, anemia, and 
thrombocytopenia, increasing infection risk. 
Therefore, a system must simulate the maintenance 
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of healthy HSCs, production of lymphoid, 
erythroid, and myeloid lineage cells, and their 
release into the circulatory system. Incorporating 
an immune compartment, particularly a 
hematopoietic one, into integrated 
microphysiological systems will significantly 
enhance anticancer drug screening 
methodologies39-42. 
 
Conclusion: 
Prior to clinical trials, there is a critical need for 
innovative techniques to screen anticancer 
medications. We propose developing a 3D tissue 
platform that integrates essential components from 
various organ systems to evaluate the efficacy and 
potential side effects of anticancer drugs. These 
human cell-derived tissues mimic the in vivo 
characteristics of vascular drug transport and tissue 
response and are perfused by a microvasculature. 
Housed within a microfluidic device, the system 
allows for non-invasive monitoring of tissue states 
and control over factors affecting tissue physiology 
and drug response. Currently, the device includes 
vascular, tumor, cardiac, and bone marrow tissues, 
with the capability to expand by adding new tissue 
modules. This in vitro approach will facilitate the 
early identification of potential side effects of 
anticancer treatments before they manifest in 
clinical trials43-45. 
 
5.3.2 Transgenic Model: 
The development of cancer therapeutics targeting 
specific molecular pathways is a key focus in 
modern biology and chemistry. Understanding 
tumor biology and the mechanisms of action for 
targeted molecules, along with their side effects, is 
essential for drug development46. This study 
explores the use of genetically modified 
Arabidopsis thaliana as a rapid, cost-effective 
screening method to evaluate the efficacy of 
human anticancer drugs. Four known inhibitors of 
human cancer pathways were tested for their 

effects on the plant's cytoskeletal and 
endomembrane networks, utilizing GFP-tagged 
microtubule proteins. The results demonstrate 
Arabidopsis as a viable alternative to traditional in 
vitro methods for preliminary drug screening47. 
 
Procedure: 
Paclitaxel, known for stabilizing tubulin 
polymerization in plants, was used to test our 
strategy. After 24 hours, a 10 µM dose caused 
minor microtubule (MT) disorganization in some 
cells, with more significant effects at higher 
concentrations. At 30 µM, widespread MT 
disorganization occurred across various cell types, 
accompanied by plastid detachment and curvilinear 
morphology due to excessive MT growth. This 
dose also disrupted the ER and impaired vacuolar 
transport, as seen by reduced GFPChi 
fluorescence. In transgenic plants, moderate effects 
were only observed at 200 µM, with some petiole 
cells showing MT damage, while others remained 
unaffected. ER disorganization was minimal, 
though stomatal turgor was compromised48-51. 
 
Result: 
It has been shown that A. thaliana is susceptible to 
several clinically significant medications, 
including cytotoxic medications and kinase 
inhibitors. When seen as a whole, our findings 
show the approach's potential value in locating 
novel anticancer medications that can be further 
studied against particular human targets. This 
strategy should be taken into account in the future 
for a systemic evaluation of various cytotoxic or 
molecular targeting medicines that is both 
affordable and effective52. 
 
6. Discussion: 
The screening of anticancer drugs involves various 
models, each with distinct advantages and 
limitations. No single model can fully capture the 
complexity of human tumors. Therefore, a 
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combination of approaches such as cell-based 
assays, animal models, computational techniques, 
and microfluidic systems is essential to gain a 
comprehensive understanding of drug efficacy, 
toxicity, and mechanisms of action. Integrating 
these models improves the likelihood of 
identifying promising drug candidates for further 
development and clinical trials. Staying updated on 
advancements in this field is crucial as new models 
may have emerged53-54. 
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